uBooNE Physics Analysis Meeting -Low Energy Excess-

Georgia Karagiorgi and Teppei Katori Friday, Jan. 9, 2009

We should start thinking about a possible low E analysis structure for MicroBooNE, and start developing necessary tools to get us there.

Today:

Analysis @ MiniBooNE
Thoughts on possible analysis routes @ MicroBooNE
Quantifying MicroBooNE physics potential – short-term

@ MiniBooNE

MB lowE analysis = extension of MB v_e appearance analysis

it uses v_e CCQE reconstruction, selection cuts (see next slide), and machinery developed for oscillation search

Start with Flux Prediction x Cross-sections

→ Model interactions in detector & apply reconstruction

→ Apply PID cuts

= Event rate prediction: R(E)

$$E = E_{v}^{QE} = reconstructed neutrino energy$$

$$= \frac{2M_{n}E_{l} + M_{p}^{2} - M_{n}^{2} - M_{l}^{2}}{2(M_{n} - E_{l} + \mathbf{p}_{l} \cdot \mathbf{u}_{\nu})}$$

@ MiniBooNE

v_e CCQE selection cuts

Basic cuts:

- **Exactly 1 subevent** (subevent = collection of hits within $a \sim 100$ ns window)
- N_{veto} < 6 (removes cosmics)
- $N_{tank} > 200$ (tank activity, eliminates e's from muon decays)

PID cuts: •
$$\log(\mathcal{L}_e/\mathcal{L}_{\mu}) > a_0 + a_1 E_e + a_2 E_e^2$$

•
$$\log(\mathcal{L}_e/\mathcal{L}_{\pi^0}) > b_0 + b_1 E_e + b_2 E_e^2$$

•
$$M_{\gamma\gamma} < c_0 + c_1 E_e + c_2 E_e^2$$
.

 a^i , b^i , c^i determined for maximum oscillation sensitivity

How do they translate for MicroBooNE?

@ MiniBooNE

 E_{v}^{QE} distribution

·e

Note: single-γ events contribute to v_e CCQE background, especially at low energies

Neutrino mode: data (points with statistical errors) and backgrounds (histogram with systematic errors)

200-475MeV:

MC = 415.2 ± 43.4 Data = 544

Excess = Data - MC = 128.8 ± 43.4 significance = $128.8 / 43.4 = 3.0 \sigma$

Low excess interpretation: possible with either $e^{+/-}$ (electron-like) or γ (γ -like) in the final state

@ MiniBooNE

Note: similar information can be extracted as a function of Evis, Uz ($=\cos\theta$), etc...

arXiv:0812.2243v2 [hep-ex]

@ MiniBooNE

Same analysis for antineutrinos → no excess found

& then comparison between neutrino and antineutrino results for quantifying how well particular physics/background hypothesis for the low E excess matches the data in both energy distributions (neutrino, and antineutrino)

@ MicroBooNE

Necessary inputs:

- Flux, Cross section
- Event modeling in detector, reconstruction, and development of selection/PID cuts (eg., e/gamma separation); quantifying detector efficiency
- Determination of systematics (see next slide for a list of MB systematics)

@ MicroBooNE

MB Systematics

Source	v mode uncer. (%)	
E _v ^{QE} range (MeV)	200-475	475-1100
Flux from π ⁺ /μ ⁺ decay	1.8	2.2
Flux from π ⁻ /μ ⁻ decay	0.1	0.2
Flux from K ⁺ decay	1.4	5.7
Flux from K ⁻ decay	-	-
Flux from K ⁰ decay	0.5	1.5
Target and beam models	1.3	2.5
v cross section	5.9	11.9
NC π ⁰ yield	1.4	1.9
Hadronic interactions	8.0	0.3
External interactions (dirt)	0.8	0.4
Optical model	8.9	2.3
Electronics & DAQ model	5.0	1.7
Total (unconstrained)	12.3	14.2

Similar

Similar

Very small in uB

?? (need to quantify corresponding uncertainties in uB)

@ MicroBooNE

Necessary inputs:

- Flux, Cross section
- Event modeling in detector, reconstruction, and development of selection/PID cuts (eg., e/gamma separation); quantifying detector efficiency
- Determination of systematics (see next slide for a list of MB systematics)

Possible uB analysis scheme:

1. Low E hypotheses: all of them either e-like or γ-like

Presumably we will have two samples to work with: electron-like, and gamma-like

A uB low energy analysis could make (simultaneous) use of both samples.

→ We need to know how well we can separate γ's(e+e-) from e-'s at energies ~200-475MeV (ArgoNeut will address this)

@ MicroBooNE

Assuming an electron-like sample and a gamma-like uB sample,

we can play a similar game as MB did (comparison of v and \overline{v} distributions), comparing how the two samples scale for different low E hypotheses

e.g., start with an underlying scenario as the source of some excess, A and B, in electron-like and gamma-like sample, respectively

[A-B relation determined by the physics in each hypothesis]

Fit Data vs Bkgd+(A or B) for each samples

@ MicroBooNE

Possible uB analysis scheme:

2. A joint analysis can also be done using MB data

E.g., assuming an excess is found by uB, how does it compare to MB excess?

@ MicroBooNE – short term

What can be done quickly (in a month)?

1. Excess expectations @ uB for various low E excess hypotheses

Recall, MB maximum χ^2 probabilities for each hypothesis:

	Stat Only	Correlated Syst	Uncorrelated Syst
Same v, v NC	0.1%	0.1%	6.7%
NC π^0 scaled	3.6%	6.4%	21.5%
POT scaled	0.0%	0.0%	1.8%
Bkgd scaled	2.7%	4.7%	19.2%
CC scaled	2.9%	5.2%	19.9%
Low-E Kaons	0.1%	0.1%	5.9% a in arry
v scaled	38.4%	51.4%	5.9% 58.0% Preliminary

Each of these probabilities is associated with an excess prediction for MB neutrino mode → can extrapolate this prediction to a uB prediction and obtain significance

@ MicroBooNE – short term

What can be done quickly (in a month)?

2. A preliminary uB oscillation sensitivity

- Scale event rates from MiniBooNE
- Assume no pi0, delta background
- Assume same flux systematics (no dirt, pi0 systematics)
- Assume no pi0, dirt, hadronic uncertainties